
WRDC-TR-89-3040 AD-A208 446

A COMPOUND SCALING
ALGORITHM FOR
MATHEMATICAL
OPTIMIZATION

V.B. Venkayya

V.A. Tischler

Analysis and Optimization Branch
Structures Division

February 1989 DTIC
ELECTE -

6~,JUNO 2 1989U

Final Report for the Period November 1988 to February 1989

Approved for public release; distribution is unlimited.

FLIGHT DYNAMICS LABORATORY
WRIGHT RESEARCH and DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE. OHIO 45433-6523

89 6 01 054



NOTICE

When Government drawings, specifications. or other data are used for any purpose other
than in connection with a definitely Government-related procurement, the United States
Government incurs no responsibility or any obligation whatsoever. The fact that the
Government may have formulated or in any way supplied the said drawings, specifications.
or other data, is not to be regarded by implication, or otherwise as in any manner, as
licensing the holder or any other person or corporation; or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any way be
related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable
to the National Technical Information Service (NTIS). At NTIS. it will be available to the
general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

VIPPERLA B. VENKAYYA NELSON D. WOLF, Technic anager
Project Engineer Design & Analysis Methods Group
Design & Analysis Methods Group Analysis & Optimization Branch

FOR THE COMMANDER

H61N T. ACH. Chief
Analysis Optimization Branch
Structures Division

If your address has changed, if you wish to be removed from our mailing list, or if
the addressee is no longer employed by your organization please notify WRDC/FIBRA,
WPAFB, OH 45433-6553 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security consid-
erations, contractual obligations, or notice on a specific document.



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMBNo. 070-0188

Is. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFlED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE Approved for public release; distribution is
unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

WRDC-TR-89-3040
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Analysis & Optimization Branch (if applicable)

Structures Division I
6c. ADDRESS (City, State, and ZIP Code) lb. ADDRESS (City, State, and ZIP Code)

WRDC/FIBRA
Wright-Patterson AFB OH 45433-6553
B. NAME OF FUNDING/SPONSORING Bb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

Flight Dynamics Laboratory WRDC/FIBRA N/A
Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO. NO ACCESSION NO.

Wright-Patterson AFB OH 45433-6553 61102F 2302 N5 06
11. TITLE (Include Security Classification)

A Compn,-rd Scaling Algorithm for Mathematical Optimization
12. PERSONAL AUTHOR(S)

Vipperla B. Venkayya, Victoria A. Tischler
13a. TYPE OF REPORT 13b. TIME COVERED ' 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Final IFROMNy TO Feb 1 1989, February 47
16. SUPPLEMENTARY NOTATION

1 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP12 -01

ABSTRACT (Continue on reverse if necessary and identify by block number)

This paper derives a compound scaling algorithm from a simple scaling algorithm for use with
general mathematical optimization problems. Compound scaling is necessary when the con-
strains are nonlinear and the variables do not all belong to the active set. Compound
scaling in conjunction with the optimality criteria method has practical applications in
large scaled multidisciplinary design. It will extend the scope of the optimality criteria
method to handle problems with thousands of variables and constraints. The development of
simple scaling is included as a basis for the development of the compound scaling algorithm.
Five problems were selected to demonstrate the effectiveness of the simple and compound
scaling alyorithms. /

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
(aUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. C DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
Vipperla B. Venkayya 513-255-7191 WRDC/FIBR
DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED



FOREWORD

This report is prepared as part of in-house research under basic research Project 2302,
Task No. 2302N5, "Structural Dynamics and Controls," and Work Unit 2302N506 of
the same title. The work was carried out in the Design and Analysis Methods Group
of the Analysis and Optimization Branch (FIBR), Structures Division, Flight Dynamics
Laboratory of the Wright Research and Development Center (WR DC) at Wright-Patterson
AFB, Ohi- 45433-6523

The authors greatly appreciate and acknowledge the support and encouragement of
Mr. Nelson Wolf, Technical Manager of the Design and Analysis Methods Group.

The report was reviewed by a technical committee headed by Maj R. Hinrichsen and
supported by two committee members, Maj L. Hudson and Capt R. Canfield. Their
thorough review and suggestions significantly improved the clarity of the report. The
authors sincerely thank the committee for its effort.

The time period of the research for this Technical Report is November 1988 - February
1989. The manuscript was released for publication in February 1989.

Accesston For

NTIS GRA&I
DTIC TAB
Unannounced 1]
justification -.

B OOPY
By
Distribution/ h

Availability Codes
Aval and/or

Dist Special

-Al

'ii



TABLE OF (ONTENTS

SECTION TITLE PAGE

1.0 INTRODUCTION 1

2.0 MATHEMATICAL STATEMENT OF TIlE PROBLEM 3

3.0 DEVELOPMENT OF SIMPLE SCALING 5

3.1 CLASSIFICATION OF CONSTRAINTS 5

3.1.1 POSITIVE CONSTRAINTS z, >0 6
3.1.2 NEGATIVE CONSTRAINTS z. < 0 7
3.1.3 CLASSIFICATION BASED ON A MARGIN OF 8

SAFETY (MS) DEFINITION

3.2 SCALE FACTOR DERIVATION FOR SIMPLE SCALING 9

3.2.1 CASE 1 10
3.2.2 CASE 2 13

3.3 INTERACTION FORMUTLA FOR THE SCALE FACTOR 13

3.3.1 CASE 1 18
3.3.2 CASE 2 18
3.3.3 LIMITATIONS 18
3.3.4 OPTIONS 19

4.0 COMPOUND SCALING ALGORITHM 22

4.1 CONSTRAINT VALUES MATRIX - z., 22
4.2 CONSTRAINT GRADIENT MATRIX - N" Is 23
4.3 GENERATION OF THE p PARAMETERS 23

4.3.1 CASE 1 24
4.3.2 CASE 2 24
4.3.3 EXCEPTIONS 24

4.4 SCALE FACTOR TABLE 25
4.5 SCALE FACTOR ASSIGNMENT TABLE 26
4.6 APPROPRIATE SCALE FACTOR FOR EACH VARIABLE 27

5.0 RESULTS OF APPLICATIONS 29

6.0 SUMMARY AND CONCLUSIONS 44

mm • • m n I m



LIST OF ILLUSTRATIONS

FIGURE TITLE PAGE

1 Two Variable Space 4

2 Constraint Classification for Positive Constraints 6

3 Constraint Classification for Negative Constraints 7

Vii



LIST OF TABLES

TABLE TITLE IPA(lE

I Format of the Constraint Gradient Table 23

2 Format of the Scale Factor Table 25

3 Format of the Scale Factor Assignment Table 26

4 PROBLEM 5: Constraint Gradient. Matrix for Violated Constraints 40

5 PROBLEM 5: Scale Factor Table 41

6 PROBLEM 5: Scale Factor Assignment Table 41

7 PROBLEM 5: Values of the Variables Before and After Scaling 42

8 PROBLEM 5: Values of the Constraints Before and After Scaling 43

ix



1.0 INTIODIIC TION

Constrained iiiinixnization/iiaxiniizittion problems are of interest in many cngineering

disciplines as well as mathematics and physics. This problem, often described as opti-

mization, consists of a performance (objective) function to be minimized arid a number

of inequality and equality functions which define the region of interest (constraint bound-

ary of the region). Both the objective and constraints are functions of a common set of

variables. Some of the constraints are derived from the system performance bounds, and

others are simply the limits on the variables themselves. This optimization problem is of

such generic interest that it has attracted significant, attention ill the research community

over the last forty years. As a result, a number of highly sophisticated linear and nonlinear

programming algorithms are available at present for a variety of applications. Notwith-

standing these developments, there are serious shortcomings in the way of applications to

large scale multidisciplinary design. The optinality criteria method (' 4) has the potential

to extend optimization to problems with thousands of variables and constraints. One of the

significant elements of the optiniality criteria method is the concept of scaling. Scaling mi-

plies changing the variables with the objective of bringing the constraints to the boundary.

The constraints can be brought to their boundaries either by adding differential quantities

or by multiplying the variables by scale factors. The latter is called scaling. This procedure

was originally proposed for constraints which could be scaled in a single step('). Later

it was generalized for nonlinear functionsP3 ,' ). In both cases, however, a simple scaling

algorithm was used, and it was adequate for structural optimization problems. On simple

scaling a dominant constraint can be identified, and scaling with this constraint generally

brings the remaining constraints into the feasible region. This is not necessarily the case

in general mathematical optimization problems, and a compound scaling is necessary in

order to extend the scope of the optinality criteria method. Another significant element

of the optimality criteria method is modification of the variable vector at the constraint

a i l l II



boundary by directly invoking the optimality as defined by the Kuhrz-Tuckerconditions(4).

The object of this paper is to give a comprehensive derivation of the compound scaling

algorithm with examples to illustrate its effectiveness in reaching the constraint surface

or the intersection of the constraints. The details of its application in optimization are

given later(s). It is worthwhile pointing out, however, that it is tacitly assumed that the

optimum in constrained minimization (or maximization) problems lies on the constraint

boundary or at the intersection of the constraint boundaries. All other cases belong to

unconstrained minimization problems, and they are not relevant to the present paper.

It is often necessary in optimization prol)lerns to scale the constraint functions to their

boundary, since most optimal solutions in constrained muinimization (or maximization)

p roll'ms are at the boundary of the feasible and nonfeasille regions. This can be accom-

plished by a numerical search in the context of nonlinear programming. However, this

numerical search can be tedious and time consuming. A sim)le scaling algorithm, without

formal mathematical derivation, was first used in 1968(i) to locate the constraint bound-

ary in a single step. This simple scaling algorithm was generalized in 1988 (3 ,1) to include

constraints that require more than one scaling step. A formal mathematical derivation,

starting with a first order Taylor Series al)proximation, was presented( 3' 4). The algorithm

wa still a simple scaling, because it was assumed that scaling with a single dominant con-

straint function would satisfy the remaining constraints. This is the case in most structural

optimization problems when all the variables belong to an active set. References (3) and

(4) define active and pa.ssive variables as well as active and passive constraints.
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2.0 MATHEMATICAL STATEMENT OF THlE PRIOBLEM

The constrainedl optimiizationi probulemn can bie stated inat hemat Wally as follows:

Minimize or maximize a functioni F(xT)

F(.T)= F(-, , r(1r

subject to the inequality constraints

(X IX .X)! z, J -~ 1, 2... k (2)

and equality constraints

Z, ~ (- I , T . nJ k + 1(3)

The basic procedure for the solution of this numerical optimiizat ion problemi is to de-

vise a search strategy to find the optimium, starting from a given initial solution. M~ost

successful search techniques are gent-rally ba-zed on the constraint andl objective function1

gradient information. This gradient information is most mecaningful (effective) when it

is determined at the constraint boundary (separation between the feasible and the infea-

sible regions - Fig.1), because the optiniuu is usually on this boundary in constrained

minimization (maximization) problems. As a result. constraint boundary location is ex-

tremely important. An efficient, optimhization algorithm should have the facility to reach

this boundary at a mininiumi computational cost from any point in the n-dimensional

space. The purpose of the compound scaling algorithin is to provide such facility.

3
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Fig I TWO VARIABLE SPACE

The details of how to use this scaling algorithm for the solution of the optimization

problem are given in Reference 5. The discussion in this paper is limited to the following

problem. Given an initial solution x, how to scale z such that none of the constraints are

violated while at least one of the constraints is at the boundary.



5.0 DEVELO)PMENT OF SIMPLESC(AL1N(

The underlying assumpjtionl of simplJle scaling is that I here exssa doinaint (miost

violated) constraint and scaling with respect to this const rainit will hlriig all the other

conistrainits to the feasible region. This is niot true, in general, when the cons1t aints are

nonlinear or when the variables do niot. all belong to all active set. Ill Such cases ai compun)l~d

scaling algorithni is necessary and it will be dliscussedl in the next scct ion. However. thle

simple scaling Is still the basis for the development of thle comipounid scaling algorithmin.

and its details are presented here for proper underst andinig. The simiple scaling procedure

was discussed earlierPt") but will be repeated here, for comipleteniess. ( lassificat ion of

constraints basedlon tlieir relationship to the coist rainith1oundlary lpr('c((l thle a pplIication)1

of 0-h scaling algorit hini. The niext uiibsect ion dhiscusses the procedlure for classification.

3.1 (iassificiitiori of Coiist raizits

The initial variable vector, r. Is assumiied to be giveni. Evaluation of all the const raints

with this variable vector results iii t hree c.ases:

* CASE 1: Somie conist ra ints are violated.

9 CASE 2: None of the conist ra ints are violated.

* CAS E 3: Sonme constraints are at t lie, b)oundary arid other., are not %violated(f

The first two cases are the candidates for scaling. mid~ it Is usually not necessary to scale

in the third case.

The three cases can be discerned 'in anl easy way by examining a set of .1 p~tranietcrs

or target responise ratijos. TIhe 3 lparanie(r is (definied as

12 (4I)



where the subscript j indicates the jth constraint (Eqs. 2, 3). Z- is the limiting value of

the constraint. z) is the computed value of the constraint with the given or the assumed

variable vector, z. Based on the 0 values the constraints can be classified into three

categories:

* Violated constraints - Infeasible region

I Active constraints - On the constraint boundary

• Inactive or passive constraints - Feasible region

The 3 values for these three cases are defined for various situations.

3.1.1 Positive Constraints 1i > 0

For positive constraints four cases can arise:

1. 0 < (3 < 1 Violation for all Positive Constraints

2. (3 = I Active Constraint

3. (3, > 1 Inactive or Passive Constraint

4. flj < 0 Inactive or Passive Constraint

These four cases are illustrated in Fig. 2.

I I I I
0.0 1.0 +.0

FEASIBLE INFEASIBLE FEASIBLE

Fig :2 CONSTRAINT CLASSIFICATION
POSITIVE CONSTRAINTS
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3.1.2 Negative Constraiiits ij < 0

Here again four cases can arise:

1. /31 > 1 Violation for all Negative Constraints - Infeasible

2. 31 < 0 Violation for all Negative Constraints - Infeasible

3. 0 < /3 < 1 Inactive or Passive Constraint - Feasible

4. /01 = I Active Constraint

These four cases are illustrated in Fig. 3.

I I I I
0.0 1.0+0

INFEASIBLE FEASIBLE INFEASIBLE

Fig :3 CONSTRAINT CLASSIFICATION

NEGATIVE CONSTRAINTS

The following rules are recommended in order to facilitate the formulation and imple-

mentation of the algorithm. The first two rules pertain to the formulation, and the last

two rules to the implementation.

Rule 1: The first step in classifying constraints is to formulate all the inequality con-

straints as

7



If there are constraints in the form z, z , multiply both sides of the inequality by -1.

Then these inequalities reduce to -z, -Z.

Rule 2: If z, is zero, then take one of the terms from the left side of the inequality to

the right. If there is only one term on the lefthand side, then let zj= ( where

Ifl 0.

Rule 3: If zj becomes zero, then write the inequality as

_old .old

_old ) <
S2 2 (6)

Now the new z7'= .-- old xj and the new z"" The new z3 and z, are used in

12

the 3 definition.

Rule 4: If 0 is zero or negative, assume a small value (positive) for 0 (.1 or less) and

scale first. Then evaluate the constraint and continue scaling until 0 becomes

positive.

3.1.3 Classification Based on a Margin of Safety (MS) Definition

It is sometimes more convenient to classify the constraints based on the definition of

margin of safety (MS.), The original inequality constraint is given as

< <2 (7)

This inequality can be redefined in t erms of MS as

Now if z,/z, is (]efined as /. then

M.- (.p, -1)> 0 (9)



Now three possible cases arise:

CASE 1: # > I Positive MS - Feasible Region

CASE 2: J= I Ai the (onstraint Boundary

CASE 3: ti < 1 Negative MS - Infeasible Region

If all the constraints have a positive MS, then it is advantageous to bring the nearest

constraints to their boundary by scaling. If some of the constraints have a negative MS,

then it is necessary to bring them to the constraint boundary by scaling. When sonic of

the constraints are at their h)oun(Iary and others are all with a positive MS, then no scaling

is necessary.

3.2 Sea](, Factor Derivation For Simxph. Scaling

The first objective of scaling is to bring all the violated constraints to the feasible regiol

or to the constraint boundary. If all the constraints are in the feasible region, then scaling

can be used to bring some of the constraints to the constraint boundary. The mathematical

basis for scaling can be d(erive(d from the first, order approximation of a Taylor's series.

The vector, x. is the given or assumed vector of variables. x is the scaled vector to

bring the violated constraints to the feasible region. The re]alionship between these two

vectors in simple scaling is assuned to be

Ax: (10))

where A is a scalar multiplier for all the variables. Let th(, differential vector dx be defined

as

9



If z. is the constraint function, the first order approximation of a change in z) due to a

change in x can be written as

dz = dz)dx + Oz.r dx2 +... + iz dx, (12)

Substitution of (1) iJto (12) gives all expression for d:: as

dz) = (A- 1) N.,x, (13)

where n in the summation represents the number of variables participating in the change.

It is assumed in this derivation that all the variables are participating. The constraint

gradient N2J (differentiation of the jth constraint with respect to the i t h variable) is defined

as

N Z )L3  (14)
dx,

Now Eq. 13 can be written as

d = (A 1) N)I(15)
F1

Al exanination of Eq. 15 p)rselnts two interesting cases which will be discusse(d in detail

in the next two subsections.

3.2.1 ('ase I

The first case, henceforth. will be referred to as the active case for distinction. This

designation comes from the discussion of active an(l passive variables in References 3 and

4. This case corresponds to
N)

z < o (16)

In this case a parameter J'jA is (d(filed as

PJI - I u , (17)

10



With this definition Eq. 15 can be wrilt en as

,z (I - Aj))P)A (18)

Now the scale factor A.A can be written as

dz3  A

where bj is defined as
I dz, {20)

I A Zi

Eq. 19 can also be written as

A 1b I1 b) (21)

by neglecting the higher order terms of b in a binomial expansion. provi(d

IbI < 1 (22)

From Eq. 21 dz- can be written as
dz1  PJA

zj: AA - /JA 
(23)

or

4- A, -P)A + + (24)

The constraint value z, corresponds to the variable vector, r. and z) + dz, corresponds to

the new variable vector x. If the object is to bring the constraint to the boundary. then it

can be written

Z) a- zi + dz, (25)

From the definition of the /1 parameter (in Eq. 4), Eq. 24 can be written as

AjA - A + 1 
(26)



Solving for the scale factor, A).4. from Eq. 26 gives

A3A pjA (27)
1j + PJiA -

Now x can be written as

= AjAJ (28)

The approximations indicated in Eqs. 21 and 25 are contingent upon two conditions.

The first condition is the first order approximation of a Taylor's series which limits the

application to small changes. The second condition is contingent uipon the parameter fbI

being very small compared to 1. From Eqs. 26 and 21, b can be written as

1b = I W, - 1) (29)
P)A

OBSERVATION 1: It is interesting to note that for the case of 'JA = 1, the scale factor,

A)A. given by

jA (30)

is exact regardless of the range of fi,. The first order approximation in the Taylor's series

expansion and the inverse first order approximation in the binomnial expansion, Eq. 21,

appwar to eliminate the approximation altogclher at. least fur the case of iA = 1.

OBSERVATION 2: If all ?t terms in the summation in Eq. 17 are of the same sign and

the degree of nonlinmarity is > 1, then

11.A > 1 (31)

OBSERVATION 3: The parameter pL is a measure of nonlinearity of the constraint func-

tions. This fact was used to construct an interaction formulaM which will be generalized

later in this section.

12



3.2.2 Case 2

The second case, designated as the passive case. is when

Nj, > o (32)
Z)

A y parameter is then defined as

P ij UN (33)
I I 3

Then the scale factor Aji can be written as

,) t -/I 3 i, - 1
A,1 , (34)

OBSERVATION 4: The scale factor as derived from Eq. 34 is only valid for small changes.

consistent with the first order Taylor series approximation, except when /11 - 1.

OBSERVATION 5: The scale factor in Case 1 is inversely proportional. while the scale

factor in Case 2 is directly proportional to the target response ratio, /I.

The second subscripts A and P in the definitions of the parameters p and A are simply

for the convenience of distinguishing Cases I and 2. This distinction is very crucial for

identifying active and passive variables in scaling. The main point is not which case

represents the active or passive condition, but instead it is to recognize that these two

are distinctly different cases, and ('ase I should be handled as an inversely proportional

condition while Case 2 is a directly proportional condition.

3.3 Interaction Formula for the Scale Factor

The scale factors derived from the first order approximation of a Taylor's series, Eqs.

27 and 34, represent an interesting generalization for nonlinear functions. However, the

nature of approximation is such that its usefulness is limited to a very narrow range of

13



about 10 to 15'- on either side of the series .xpan.sion (/3 value of 0.85 to 1.15). Beyond

this range the error of approxination is not acceptable, because it may take too many

scaling steps to reach the constraint boundary. To overcome this difficulty an interesting

interaction formula was p)ropose(( 4) in 1988. The purpose of this interaction formula is to

extend the range of application of the scaling algorithm from -oc to oc, while retaining

most of the accuracy accustomed to in linear scaling. After a brief discussion of the

motivation behind this interaction formula, a formal generalization will be presented with

the help of simple mathematical fimct ions.

A fokrnula involving linear an( nonlinear interaction is written( 4) for the special case of

a beam where axial deformation represents a linear condition and bending deformation a

nonlinear condition. An interaction formula is based on the assumption that exact scaling

formulas are available at the two extreme conditions: i.e. when the beam deformation is

entirely due to axial forces, the scaling formula is given by

A c/ (35a)

The other extreme is when the beani deformation is entirely due to bending. Then the

scaling formula is given by

A (x /(35b)

where the parameter n is a measure of nonlinearity represented by the bending. However,

when the actual deformation is a result of both the axial and bending forces, then an

approximate interaction formula can be written as

A- / ( + 3  (35c)
I~j 11 BJ

For the notation of the parameters in Eq. 35c see Reference 4.

The basis for generalization of the scaling algorithm can be established by examining

14



the p ani f# parameters of two simple constraint fiinctions

+ C2 + + C< Z (36)3"I  3"2 ,r -

Z 2 CIXlI + C2 2 + + CnXn < Z 2  (37)

where xI, Xz . Xn are the variables and c 1 ,c 2 - c,, are a set of positive constants. The

quantities z, and z" are the limits of the inequalities. The p parameters in these two cases

are defined as
Ni I s

ILIA - (38)

SN,2-r
12 =P= 1 (39)

Interestingly, the measure of nonlinearity in both these cases is 1, and it represents the

linear case. Now the parameters #3 are defined as

(40)

1 :2 (41)

Z2

It is easy to show that the exact scale factors in these two cases are simply
1

AIA =  (42)

A2 P = 02 (43)

The first condition represents Case I and the second represents Case 2 in the earlier

discussion in Sections 3.2.1 and 3.2.2, respectively. A similar examination of two nonlinear

functions
C1 C2  C(

r, 4 + "" + (44)
XI X Xn'



rs + + c"XI (45)Z2  C I lr 1 + C22"2 J+'"J n

gives an interesting result. The e's are again assumed to be positive constants. The p

parameters for these two cases are

PIA n (46)

1121' "1i (47)

The measure of nonlinearity in these two cases is m. It is easy to again show that the

exact scale factors for these two cases are

AIA P 'II A (48)

A21' (/02PA21 (49)

Now an examination of constraint functions with both linear and nonlinear terms

cI + 2+ -. C + + .. a + 2 n (50)

I 1 X2 X"T "1"

z- -CIXI: + + +C 2X2+++ CnI, + CX + -+ c 2,,X" ' <_ 1 (51)

gives the basis for the interaction formula derived intuitively earlier (41 (Eq. 35c). The

parameter p1 in these cases is no longer a constant, bit instead it, stra(dles between limits

I and rit. i.e.,

I p < Fit (52)

This ineans that the ineasure of nonlinearity varies between the two extremes depending

o(I he valiues of the variables. For exanmple. wheii the values of t le x' are very large

, >> I i -- 1, 2_.... (53)



the value of the p parameter for the the first constraint. approaches the lower limit 1.

Conversely, it approaches the upper limit rn whien the .r'., are very small.

X, < I t 1 .1,2.... r, (54)

The second constraint, Eq. 51, represents the opposite case inl the scnise that the i pa-

rameter would be I for small values of i, and ?n for large values. It is assumed that the

elements of the normalized c vector are riot too far from one.

The suggested interaction formulae in these two cases are

AlA = + ( 02) a2 (, 2)' (55)

A a (,/12) + a 2 (,12)"~(6

where the first term represents the linear contribution while the secolld is the nonlinear

part. However, it turns out that these interaction fornulac are equivalent to

I

AIA = - (57)

A2 1' = (/'2)" (58)

The scale factors given by Eqs. 57 and 58 are far superior approximations than those

given by Eqs. 27 and 34. Th|e range of their application is not limited to 10 to 15(7 oii

either side of # = 1. However, they are not. exact when| the summation iM t he it Iparanieter

definition contains both positive and negative terms. In such cases two scale factors are

defined for each constraint. These correspond to Case I anol Case 2 discussed earlier. For

example, the two scale factors for the jth constraint can be defined as

17



3.3.1 Case I

,',.4j, (59)

3.3.2 Case 2

A : (3 ""(60)

The( definition of P)A and /l' in Eq. 59 and 60 is a.s follows:

A n - X v,/ -, (17a)
I I

and
/, -- (33a)

I I -.7

The important (list jution between the origiial equations (17 and 33) and their alternates

(17a and 33a) is that the two summations include only terms of the same sign. In other

words the sun in Eq. 17a includes only negative terms and similarly Eq. 33a contains

Only positive terms.

The scale factor A)A is a)plicable to all the variables that coitribute to the sum in Eq.

17a. Similarly. the scale factor Ail, is applicable to th( variables in the sum in Eq. 33a.

3.3.3 Limitations

The following limitations apply to the scale factor calculated from Eqs. 59 and 60.

I. If Aj.A > I or < 1. then no scaling should be allowed, because such a condition

represents a pathological or asymptotic condition. arid the scaling would be
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counter-i)roductive. In such cases th e default is A). = which re)resent-, no

scaling.

2. The same rule applies to A, , as well.

3. A reasonable (uantitative limit for A, is as follows (in order to avoid large

changes in the variables):

0.01 < AA(or A,) < 100 (61)

These limits are good for the first scaling where the initial variable vector is selectd

arbitrarily. In subsequent scalings this range can be reduced even further

0.1 < AjA(or Aj/,) < 10 (62)

As stated earlier scaling is riot, allowed outside this range which mu|ean A)A or Ap, - 1.(.

This generalization of assigning more than on(e scale factor leads to the ((ncelt of o'iui-

pound scaling where each variable can have a separate scale factor.

3.3.4 Options

When the two scale factors AjA and Ajp are computed for each constraint. two cases

can arise:

1. One of the scale factors is out, of bounds (as defined by Eqs. 61 and 62). ii

which case the other scale factor is tlie only one valid for scaling. Although h'

possibility of both scale factors beinig out of bou(ls is very rezot', it indicat,

that scaling is not possible from that poinl.

2. Both scale factors are within the boulids iI which case they are both valid for

scaling. In this case two options must be examined.
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OPTION 1: Both scale factors are used for staling. The active scale factor AA is used for

scaling the variables that contributed to the negative sum in the p parameter definition,

while Ap, is used for the other variables. In such a case, movement towards the feasible or

infeasible region is fast and may result in overshooting the constraint boundary. Additional

c('alings using the two scale factors may result in oscillation about the constraint boundary

and in too many scaling steps.

OPTION 2: Only ole scale factor is used; i.c. only the active or passive variables (cor-

responding to AA or Ap) are allowed to participate in the scaling. The overshooting

)roblem is mitigated in this case. Now the question is which one is a better choice? This

decision is based on determining whether this constraint is basically governed by Case 1

or 2 (inversely or directly proportional to i). This determination is quite simple when

AA and AP are determined with equal values for all the variables. The largest of the two

A's (AjA or Ajp) is the governing comdition, This condition (active or passive) remains

the sane regardless of what happens in subsequent solutions. For example, if both A's

are within the bounds in the solution with equal values for all the variables, and AIA is

the largest of the two, then A3A is the governing condition in this and all the subsequent

solutiois. Scaling for this constraint remains an active case even if Ajp is greater in subse-

quent solutions. This conclusion is based on the assumption that when all the variables are

equal (with no bias), the p parauieters describe the function behavior more realistically.

If the solution is not with equal values for all the variables, then the decision has to be

deferred until on, of the two scale factors goes out of bounds. Once AIA or A3, goes out of

)toulds, it is all indication that it will not be the governing condition for this constraint.

I1 both scale factors remain within the governing condition is by computing AjA and YjI,

with ('qual values for all the variables.

Another imljtrtan t (ase that needs attent ion is when tl is very sinall (says /I < 0.01)

2(1



and one of the scale factors is out of bounds. hiI this case the saxi, scale factor should be

applied to all the variables. This condition differs from the case when 3 is not too small

(f > 0.01) an(d one of the scalh far'tors is out of hominds. II suli ;I a casv scaling is applied

only to the variables belonging to the scale factor in bounds, and the variables belonging

to the out of bounds scale factor are left at their current values (no scaling).

So far the discussion has been in the context of a single constraint. An extension of

these ideas to the environment of multiple constraints leads to a formal derivation of a

compound scaling algorithm in the next section.
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4.0 COMPOUND SCALING ALGORITHM

The compound scaling algorithin is a further generalization of the scaling algorithm

presented in the previous section. It is assumed that there is no single dominant constraint,

an(1 the scaling has to be applied for multiple constraints in order to bring them to the

feasible region or to the( constraint surface. To put it succinctly, "scaling is a process by

which the variables are adjusted such that the constraints are brought to the constraint

surface or into the feasible region".

The compound scaling algorithin requires three important tables or rectangular arrays.

All three tables (arrays) are of the same(liimension n (rows) x s (columns), where n

represents the nml)er of variables and s represents the inluer of active constraints.

The first table is the constraint gra(dieint matrix. N,, s, which is either given or a facility

exists for its geniration. It is also assunied that all the constraints can be evaluated for

a gwein variable vetor .r. To reiterate, the following information is necessary in order to

develop the compound scaling algorithm.

1. Constraint values - natrix z, .I for a given .r

2. Constraint gra(dieit matrix N,,,., for a given x

3. Scale factor table (matrix)

4. Scale factor assig, nment table (matrix)

The last two tables are generated from the information given in the first two tables. The

first two tables are genierated from an analysis of tle system.

4. (Constrailit Valuies Mntrix - zi.

For a given variable %ect or, r. all the cotistraints can be evaluated by an analysis of the

systcem. All the constraints that are candidates for scaling are identified. This list includes
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all the violated constraints and those close to the constraint surface (within 5 to 10 ,.

The number of constraints used for scaling is .4.

4.2 Constraint Gradient Matrix - Nuafk

The elements of the N matrix, N,), are defined as

N,) (6i)3

This information is also assumed to be available from an analysis of the system. The

format of the constraint gradient matrix is shown below.

TABLE I Format of the Constraint Gradient Table

Constraints - zi 22 

Variables

I

X1 Nil N12  . . .N

X2 21 N22  . .. N2

N. -"V. N 2  . .. N,

4.3 Generation of the ji Parameters

From the constraint gradient. matrix a set of p parameters is generated. The v pa-

rameter set consists of 2 X s entries. That, is, each constraint is associated with two /
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parameters, and they are defined as follows:

p.4 =
- _Nt _j (64)

I I 73

where the above sum includes only negative terms.

(65)
I 3

where the above sum includes only positive terms. The subscript j represents the jth

constraint. The second subscripts, A and P. represent the active and passive designation

corresponding to Cases I and 2. respectively, in simple scaling (reference Eqs. 17 and 33).

Now for each constraint compute two scale factors corresponding to the two p param-

e ,rs.

4.3.1 Case I

4.3.2 Case 2

A,,- (67)

The interaction formulas discassed in 1988(0) are the basis for Eqs. 64 and 65.

4.3.3 Exceptions

" If ;I > I and /i p < I or calcuilated A, p> I, set A,,, -1 1.0

" If t'l < I and PJA < I or calculated AJA > 1, set A,.4 = 1.0
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* For all other cases use the calculated quantities.

If the scale factor becomes too large. say Ai > 100, it indicates a patliological condition

and by setting Ajp or AIA = I the scaling is by-passed for that condition. The scaling is

by-passed for that condition. The other conditions can scale the variables.

4.4 Scale Factor Table

The format of the scale factor table is similar to the constraint gradient table.

TABLE 2 Format of the Scale Factor Table

Constraints -- Z2 z8

Variables

I

X1 AIA or Allp A2A or A21, AsA or Asp

AlA or Alp A2A or A2 1' AsA or Asp

AIA or Alp A 2A or A2p A3A or Asp

Each of the entries in the jth coluimn is either AIA or Ap depending on the variable's

contribution either to the sum A.? or jip. This table gives s possible scale factors for each

variable. Which one of the q scale factors is relevant to the given variable is determined

with the help of a scale factor assignment table and the constraint gradient table.
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4.5 Scale Factor Assignrieilit Table

The format of the scale factor assignment table is similar to the constraint gradient

an(] scale factor tables.

TABLE 3 Format of the Scale Factor Assignment Table

Constraints - ZI . . .z S

Variables

i

X ft li12 . . .

X.2 121 122 . . .2s

17, IT 1i2 ins

The entries t,j in this table are calculated one column at a time where

'3j = ,- J x ( 68 )

The parameter p,, belongs to PIA or pji' depending on whether the argument in the

absolute value is negative or positive. The table is completed when all the s columns are

filled. The valiies of the entries ill the scale factor assigimiuwt table vary from zero to one.
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4.6 Appropriate Scale Factor for Each Variable

Now all the information is available for the selection of an appropriate scale factor for

each variable from the list of s scale factors.

Example: Appropriate scale fat tor for thle, ith variable.

Rule 1: From the scale factor assig1net table select the largest entry in tile ith row.

For Example: If t i is the largest entry in the scale factor assignment table, then the

appropriate scale factor for the ith variable is the A,, scale factor from the scale factor

table.

Rule 2: If there is more than one entry equal to the largest entry. for example: t,, is

the largest entry in the scale factor assignment table, but t,k and t,1 are also

equal to t,,. Then the approp~riate scale factor is any of the three (A,3 or A,k

or A,,).

Now complete this process of selecting appropriate scale factors for all the variables. Then

the scaled variables for x, are computed by

n"u, .XoldAil i = 1,2.. .i (69)

where A,j is the appropriate scale factor for the ith variable a. determined by the two rules.

The next step is to evaluate all the constraints with the new variable vector. If there are

any violated constraints, the scaling algorithm is repeated.

The results of the compound scaling algorithm are presented in the section on results

when applied to specific examples. These examples do not address the complete optimiza-

tion probleni. Otly the scaling aspect is addressed. The conplete implemnentation of the

optimization algorithm is given in Reference 5.
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5.0 RESULTS OF APPLICATIONS

Five problems were selected to demonstrate the effectiveness of the simple and com-

pound scaling algorithms. The first three problems are well suited for demonstration of the

simple scaling algorithm. The last two problems demonstrate application of the compound

scaling algorithm.

PROBLEM 1. The inequality constraint function is defined as

10 15 25 40<
XI X2 -r3l X4

The gradients of the constraint function are given by

10 15 25 40N ,, N 21 , : N ,. : N 41 -
12 N 3  3 X42

CASE 1: The initial solution is assumed to be

X1 = X2 = X3 = X4 = 1.0

For this solution z, (x) -- 90 which is a significant violation of the constraint. For scaling,

the i parameter is calculated from Eq. 64 as

4 2' I "X1

I

which implies that the measure of nonlinearity is 1, as noted earlier. The /l parameter is

computed by Eq. 4 as
1

=90 =0.0111111

The scale factor is given by Eq. 66

A = (9))'/I (-- 0
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The new variables are given by

Xr I =X2 -3 X4 90

For this solution

z (x") = 1.0

The constraint boundary has been reached in a single step, and the scaling is considered

to be exact.

CASE 2: The initial solution is assumed to be

.I =1 X2=2 x =3 X4 = 4

For this solution z, (x) = 35.8333 which is a violation of the constraint.

S , -1.0

and

= 35.8333 0.0279

Thus, the scale factor is give'n by

A 35.8333

The new variables are

x, = 35.8333 r2 - 71.6667 x73j = 107.5 74 = 143.333

For this solution

Z:(X) = 1.o

Once again the constraint surface has been reached in a single step.
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PROBLEM 2. The purpose of this problem is to show that the scaling can he exact under

certain conditions. even when the measure of nonlinearity is greater than 1.

The inequality constraint function is defined as

30 2 108 47

3 3 3 3

The gradients of the constraint function are given by

9O 6 324 141
Nil 4 "21 - 4 N3 I - 4 N 4 1 4

112 13 X

The initial solution is assumed to be

X'I = X2 = X3 '= X4 = 1.0

For this solution ::(x) - 187 which is a violation of the constraint.

11 - 3.0
I

i.e.. the measure of nonlinearity is 3.0.

187 0.0053476

The scale factor is given by Eq. 66

A = (187)' 5.718479

The new variables are

r = r2 = .r: -r 4  = 5.718479

For this solution z, (x) = 1.0

Once again the constraint surface is reached in one (' tp.

PROBLEM 3. The third problem is designed to ,-ow that the scaling is not exact, when

there is a possibility of a variation in the degree of nonlinearity. In such cases scaling



can take more than one step. Still. it would h) significantly faster tlian any searcli. The

constraint function is defined as

10 30 15 2 25 108 40 47.• . 4 .± + < 1.0
.r 1  2r ~ j

Gradients of the constraint function are given by

10 90
xii -2 - x4

15 6

N 21  - -

X2 4

25 324

3

40 141
N41 - -

4 -4

The initial solution is assumed to be

X : X2 X3 4 1.0

For this solution z, (x) = 277 which is a violation of the constraint.

The parameter i is given by

- ' _ 11  , : 2.35018
.1- Nzlr

I I

The parameter / is given by
1

277 =0.00361271

The scale factor from Eq. 66 is

A (277)- - 10.94645

The new variables are given by

.rl 7-. . x4 -- 10.94645



For this solution the consraint fiietion z (.r) - 8.36-1.11. Tile onstraint is still violated.

Second Scaling

The constraint gradients with the new variables are given by

Nil - -0.0897

N1, = -0.1256

N:= -0.2312

N 4 1  -0.3436

The paranleter p is given by

4 1'V1 I_
p - -- -= 1.03409

The parameter 3 is given by

8.36.441 0.11955

The scale factor is given by

A (8.36441)1 = 7.79879

The new variable- are

l r -.-.r3 - X4 - 85.369(0

and the new constraint valhe for this solution is

, (.r) - 1.05455

One more scaling should bring the constraint to the boundary. In the next step pu will be

reduced to 1.0. This means that in the first step the cubic ternis dominated and gave the

p value as 2.35018, and in the second step the p value was reduced to 1.03409.
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PROBLEM 4. This problen is designed to demonstrate the coimpound scaling algorithim

with a single constraint. The constraint is (fine(d as

zl(x) = 180xl +20xj - 3.Ix:j+0.2X4 -5XX2r4 37,lx:34 8.7.rl.r4 - 3.r3.r4 - O. r1.r2+0.(O1.r ,t:

+95'xx - 81x 4 .' + X' - 6.2x + 0.48xr:' + 22:' < 1.0

The constraint gradients are given by

N, = 180 - 5X 2 + 37x3 - 0.2xX2 + 95z2 + 3x2

N21 = 20 -- 5x, + 8.7X4 - ().Ix2 + .002X2X3 - 18.6x'2

N31 = -3.1 + 37x, - 3x., + (.(01rx - 1621413 + 1.44x

N 4 1 = 0.2 + 8.7X2 - 3x3 + 190X14 - 81x3 + 66x4

The initial solution is assumed to be

X 1 r2 1 " : '4 1.0

For this solution z1 (x) = 265.981 which is a violation of the constraint. The const raint

gradients are

N,1 = 309.8

N21 = 5.002

N31 = -129.659

N 41 = - 180.90

The parameters /, are computed separately for negative, Eq. 64, and positive, Eq. 65.

SUMS.

iJA = -- = 0.487475

ZI

> Ni - 1.863674
S 1,2,4

The parameter fi is given by

/= = 0.003759
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A1 . ( A 2 94256.43

A1 p= (3),' - 0.0499905

The parameter AIA >> I r(presents a pathological condition, and it is ignored. So the

variable ':j will not be scaled.

The new variables are

.l :0.0499905

x2 0.0499905

.r,, :1.0

x~l -0.0499905

The constraint fict ion value is now given as

z (.r) =5.06174

Second Scaling

Nil 216.9945

N21 20.1383

, 1  --8.0588

N41  -82.7253

- - 2.40910/ 3.4 " 

Pi' " - 2.34196

The parameter ,3 is given by

3 = 0.19756

A 1, = (5.06175)"' A -- 1.96042



Alp= (0.19756) ,, =- 0.500344

The new variables are

x= 0.0250124

x2= 0.0250124

X3= 1.0

X4= 0.0499905

The constraint function for these new variables is z, (x) -0.8649050.

Third Scaling

N,1 = 217.1140992

N 2 1 
= 20.29820597

N3 = -8.98296822

N4I 
= -83.1798822

PIA = - N = 6.8657883
t 1,2 Zl

pifp > I N  15.193772
i- 3,4

Calculate the ) by scaling up to -0.1 in order to avoid a negative "y (see Rule 4 sec 3.1.2)

fl= 0.1 0.1156196

M-0864905

AIA= (8.6490503)"'A = 1.3692072

1

Ajp = (0.1156196)-iti = 0.8676250

The new variables are:

x, = 0.02501241

X2 = 0.02501241
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- 0.86762503

0.04337299

The constraint function value is now given as

z i (x) = 0.60929182

Fourth ScaIIng

N), = 212.1575314

N2 1 = 20.2406272

• V.,j I = -7.3169668

N4! =-62.8296117

ILiA -. N,, : 13.0946068
1 3,4

8.3889252
, 2.2

The parameter 31 is given by:

: = 1.4431718

A. 4 = (0.6929182)'1A = 0.9723739

All,-= (1.4.131718),"11' = 1.04.16997

The new variables are:

xl 0.0261305

.r= 0.0261305

x-j 0.867G250

x- 0.0433730

-• •it I Ii I i I It6



The constraint function value is now given as

z, (x) z 0.9527436

Fifth Scaling

Nl 212.1521012

N-2 = 20.2339696

N3, = -7.2755990

N41 = -62.8106710

=  
- 1 , - 9.4850052

t 3,4

Nil x, = 6.3735460

The paranmter /I is given by:

= 1.0496003

AIA = 0.9949092

Alp = 1.0076243

The new variables are:

1 I = 0.0263297

X2 = 0.0263297

x3 = 0.8676250

14 = 0.0433730

The constraint function value is now

z1 (x) = 0.9990408
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which is within 0.096/i of the constraint surface.

PROBLEM 5. This problem, a gear reducer example. is designed to demonstrate the com-

pound scaling algorithm with multiple constraints. A detailed description of the problem

is given in Reference 6. In this examp, thlere are 7 design variables and 25 constraints.

The constraints are defined as:

Z. X 27 < 1.0
71723

397.5 < 1 0

z 4 (-T) = Z.9a < 1.0
2 3z

z3.r) W 3 < 1100.0
1.932

A , --- ( ( 74 5 h 2 -( 1 9 ) 1 0 6 ) /

Z6(r) A2 < 850.(

4 = 745 r )2 + (157.5) J 0) 1/2

2.7B2 = o. I x--,

7(Xr) = x23: < 40.0

X= ' < -5.0Zsx 2 -

zg(x) = " < 12.0

zl0(.) = x, < 3.6

zI (x) = -ax1 <-2.6

Z]2(.) = X2 < 0.8

ZI3(.0 -:7 -;r2 < -0.7

z14 (.) = X3 < 28.()

Z5,(Z) = -X3 !< -17.0

z, 6 (.r) = 14 < 8.3

z 7 (.7) = -X4 < -7.3
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<.r K 8.3

: 9 (i) -ix, < - 7.3

Z20 Wx = x(, < 3.9

z2 (.r) = - x < 2.9

-'1(') = X7 < 5.5

Z23 P') = -X 7 S -5.()

'2 (X) X7 f 1. 9) < 1.0

The initial solution was selected as the average of the mininumn and maximjun values

defined for each variable: (constraints z10 thru Z2:). For this solution constraints 5, 6. 8. 9

and 10 were violated. Only on(, scaling was necessary to bring all the violated constraints

to the feasible region or to the constraint boundary. The constraint gradient matrix -

N7 ,i, the scale factor table and the scale factor assignment table are given for this scaling.

TABLE 4 PROBLEM 5 : Constraint Gradient Matrix for Violated Constraints

Z 5 6 8 9 10

I 0.00() 0.000( - 1.3333 0.0000 0.0000

2 -9.7511 -. 8703 5.5111 0.0000 0.0000

3 -.3250 -.0290 0.0000 0.0000 0.0000

4 .9376 0.0000 0.0000 -. 1151 0.0000

5 O.(XXX) .0837 0.0000 0.0000 -. 1262

6 -926.1200 0.O0(N) 0.0000 .1923 0.(X0

7 O.(XX4) -495.7786 0.0000 0.0000 .1410
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TABLE 5 PROBLEM 5 : Scale Factor Table

z- 5 6 8 9 10

I

1 1.0000(X) 1.0(X))O 1.209677 1.160126 1.021703

2 .984560 1.(X)6856 .826667 1.160126 1.021703

3 .984560 1.0(X)0856 .826667 1.160126 1.021703

4 1.0000(X) 1.000000 .826667 .897436 1.021703

5 1.0000(X) 1.00000( .826667 1.160126 .983974

6 .98456) 1.000000 .826667 1.160126 1.021703

7 1.0000(X) 1.006856 .826667 1.160126 1.021703

TABLE 6 PROBLEM 5: Scale Factor Assignment Table

z- 5 6 8 9 10

.r

I

1 0.00000 O.00()O 1.0 0.0 O.0(0)w 0.000000

2 .(X)6968 .000752 1.(X)(XXX) 0.O(X)(X)) 0.000000

3 .(X)6968 .0(X752 0.()(XX) 0.0(XX0O 0.000000

4 .(X)6968 0.000000 O.O(X)00 1 .(XX)0() 0.000000

5 0.(XX)()00 .(XX)752 0.(X)O(XX) O.O(XX)(() 1.000000

6 3.00(XXX) O.O00() O.(X)(X)(X) .728571 0.000000

7 0.000000 3.0000(X 0.000(X)() 00.0(XXX) .752443
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From the scale factor assignment table, the scale factor ta)le, the constraint gradient

table, and the rules enumerated earlier, the appropriate scale factor for each variable was

determinedl. Table 7 gives the values of the appropriate scale factors, the scaled variables

and the adjusted variables when they exceeded the limits.

TABLE 7 PROBLEM 5 : Values of the Variables Before and After Scaling

Variable Original x's Scale Factor Scaled Variables Adjusted Variables

X1 .310000E+01 .120968E 4 01 .375000E+01 .360000E+01

X2 .750000E +-00 .826667E 4 00 .6200(X)E+0 .700000E+00

X3 .2250(XE +02 .984560E 4-00 .221526E 4-02 .221526E+02

x4 .7800(XE +01 .897436E+01 .700000E+01 .730000E±01

X5 .780000E+01 .983974E+00 .767500E+01 .767500E+01

x 6  .340000E+01 .984560E+00 .334750E+01 .334750E+01

X7 .525000E+ 01 .100686E4 01 .528600E+01 .528600E+01

Table 8 gives the values of the constraints bfOre and after scaling.
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TABLE 8 PROBLEM 5: Values of the Constraints Before and After Scaling

Constraint No. Initial Value Limit After Scaling

1 .6882 1.0 .6909
2 .4503 1.0 .4592
3 .4061 1.0 .3856
4 .0714 1.0 .0721
5 1049.6000 1100.0 1099.9000
6 867.6120 850.0 850.0560
7 16.8750 40.0 15.5068
8 -4.1333 -5.0 -5.1429
9 4.1333 12.0 5.1429
10 3.10(X) 3.6 3.6000
11 -3. 1(X) -2.6 -3.6000
12 0.7500 0.8 .7000
13 -0.7500 -0.7 -.7000
14 22.50(X) 28.0 22.1526
15 -22.5000 -17.0 -22.1526
16 7.8000 8.3 7.3000
17 -7.8000 -7.3 -7.3000
18 7.80(X) 8.3 7.6750
19 -7.8000 -7.3 -7.6750
20 3.4000 3.9 3.3475
21 -3.4000 2.9 -3.3475
22 5.25M) 5.5 5.2860
23 -5.2500 -5.0 -5.2860
24 0.8974 1.0 .9481
25 0.9840 1.0 .(X)52

These five examples illustrate the power and mechanics of the scaling algorithm. Complete

(let ails of how to us( Ihii s scaliug ;Igorith ni are given in Reference 5.
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6.0 SUMMARY AND) CONCLUSIONS

This paper is organized into six sections, inclusive. The first two sections explain

scaling and its intended purpose in the context of constrained mathematical optimization.

They also contain a brief history andi motivation for the development of the compound

scaling algorithm.

The third section generalizes the simple scaling discussed earlierP-' ) with additional

observations and options. The subsection on classification of constraints contains a com-

prehensive description of most of the constraint types encountered in mathematical opti-

mization and provides gui(lelines for effective iniplenwutation in scaling. The interaction

formula for the scale factor was originally derived( : '0) in the context of application to

beam problems. The )eamn deforiation can be separated into axial and bending parts

when there is no coupling between them. The axial part is characterized by linear behav-

ior while the bending part, is governed by nonlinear behavior. This paper derives the basis

for this concept in the context of general mathematical functions while extracting a much

simpler relationship. This relationship in turn leads to the compound scaling algorithm

discussed in Section 4. In essence the colpouiTid scaling algorithm is an elegant extension

of simple scaling to inultiple constraints.

The compound scaling algorithm requires basically two matrices. The first is the

constraint values matrix. z. The dimension of tiis matrix is s x 1, where s represents

the number of active constraints. The second is a miatrix of constraint gradients (table).

N. The dimension of this matrix is ri x s, where ni is the number of variables and .

represents the number of active constraints. These two matrices are generally obtained

from an analysis of the system. From this information two additional matrices A and t are

generated. The dimensions of these two matrices are identical to those of the N matrix.

The first is designated a the matrix of possible scale factors (table). while the second
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is called the scale factor assignment matrix (table). The information from the last, three

tables is the basis for an orderly derivation of individual scale factors for all the variables.

Then the relationship between the scaled an( the u|n,,calhd variables is given i)y

.r, = A,r, i -- 1,2. ...

The scaled variables are closer to the constraint boundary.

Section five contains the results of application to simple niathematical functions. The

first two examples show that. the scaling can be exact no matter how far the design is

from the constraint boundary. This means that the constraint boundary can be reached

in a single step. Ii these two examples the parameter p remains constant throughout the

u -dimensional space. and the scaling is exact. The third example shows that this is not the

case when the parameter pi varies in the n -dimensional space. In such cases scaling would

bc significantly faster than any search. The fourth example illustrates application of the

compound scaling algorithm to a single constraint. The last example is an application to

multiple constraints. These examples not only illustrate the advantages and the limitations

of the scaling algorithm but also the details of application.

The characteristics that make this compound scaling algorithm most attractive are

outlined as follows:

1. The constraint surface can be reached very rapidly froiii anywiere in the n-dimensional

space.

2. All the decisions in scaling are tied to the values of two key parameters ju anti f-

3. Determination of these two parameters is extremely simple and computationally in-

significant when the constraint and gradient information are available from an analysis

of the system.

4. Selection of ap)propriate initial values for the variables is no longer an issue.
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5. The need for directional searches and move limits is vlIimiIated.

6. The step size determination is automatic and is tied to the values of the )arameters /I

and /3.

7. Algorithm implementation is simple and straightforward, because computational over-

head beyond an analysis of the system is almost insignificant.

Future research in optimization should concentrate on the behavior of the mathematical

functions through th( study of these non-dimensional parameters.

This compound scaling a lgorithin constitutes a significant ireakthrough in the evalu-

ation of the optimality criteria approach for large scale optimization (with thousands of

variables and constraits) in a multidisciplinary setting.
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